Reverse arithmetic-harmonic mean and mixed mean operator inequalities
نویسندگان
چکیده
منابع مشابه
Some More Inequalities for Arithmetic Mean, Harmonic Mean and Variance
We derive bounds on the variance of a random variable in terms of its arithmetic and harmonic means. Both discrete and continuous cases are considered, and an operator version is obtained. Some refinements of the Kantorovich inequality are obtained. Bounds for the largest and smallest eigenvalues of a positive definite matrix are also obtained.
متن کاملSome weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملThe Arithmetic - Harmonic Mean
Consider two sequences generated by ",,+ i Mi"„<hn)hn*\ M'i"„+X,b„), where the a„ and b„ are positive and M and M' are means. The paper discusses the nine processes which arise by restricting the choice of M and M' to the arithmetic, geometric and harmonic means, one case being that used by Archimedes to estimate it. Most of the paper is devoted to the arithmetic-harmonic mean, whose limit is e...
متن کاملSome refinements of operator reverse AM-GM mean inequalities
In this paper, we prove the operator inequalities as follows: Let [Formula: see text] be positive operators on a Hilbert space with [Formula: see text] and [Formula: see text]. Then for every positive unital linear map Φ, [Formula: see text] and [Formula: see text] Moreover, we prove Lin's conjecture when [Formula: see text].
متن کاملComparison of Arithmetic Mean, Geometric Mean and Harmonic Mean Derivative-Based Closed Newton Cotes Quadrature
In this paper, the computation of numerical integration using arithmetic mean (AMDCNC), geometric mean (GMDCNC) and harmonic mean (HMDCNC) derivativebased closed Newton cotes quadrature rules are compared with the existing closed Newton cotes quadrature rule (CNC). The comparison shows that, arithmetic mean-based rule gives better solution than the other two rules. This set of quadrature rules ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2015
ISSN: 1029-242X
DOI: 10.1186/s13660-015-0735-z